The CarboCount CH sites: characterization of a dense greenhouse gas observation network

Metadata Label Value
Author(s) Oney, Brian, Henne, Stephan, Gruber, Nicolas, Leuenberger, Markus, Bamberger, Ines, Eugster, Werner, Brunner, Dominik
Publication Type Journal Items, Publication Status: Published
Full Text Search SFX for a Full-Text version of this document
Import to Mendeley

Detailed Information

Metadata Field Content
Title The CarboCount CH sites: characterization of a dense greenhouse gas observation network
Author(s) Oney, Brian
Henne, Stephan
Gruber, Nicolas
Leuenberger, Markus
Bamberger, Ines
Eugster, Werner
Brunner, Dominik
Journal or Series Title Atmospheric Chemistry and Physics
Volume Number 15
Issue Number 19
Start Page 11147
End Page 11164
ISSN 1680-7316
Publisher Copernicus GmbH
Publication Place Göttingen
Publication Date 2015-10
Abstract We describe a new rural network of four densely placed (< 100 km apart), continuous atmospheric carbon (CO2, CH4, and CO) measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km) carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling).

The Beromünster measurements are made on a tall tower (212 m) located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background) vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (< 50 km) pasture and forest fluxes exert the most simulated surface influence, except during convective summertime days when the site is mainly influenced by the eastern Swiss Plateau, which results in summertime regional CO2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites). The Gimmiz site measurements are made on a small tower (32 m) in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2) stem from large, nearby (< 50 km) crop and anthropogenic fluxes of the Seeland region, except during warm or windy days when simulated surface influence is of regional scale (< 250 km). The Lägern-Hochwacht measurements are made on a small tower (32 m) on top of the steep Lägern crest, where simulated surface influence is typically of regional scale (130–300 km) causing summertime regional signals to vary from −5 to +8 ppmv CO2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site.

We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km) atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be necessary to determine the impact of these limitations on our ability to derive reliable regional-scale carbon flux estimates in the complex Swiss landscape.
DOI 10.5194/acp-15-11147-2015
Additional Notes See also:
Document Type Article
Publication Status Published
Language English
Assigned Organisational Unit(s) 03731
Organisational Unit(s)
NEBIS System Number 004294181
Source Database ID FORM-1444747089
Description File Name MIME Type Size
No details could be found
There are no links available for this record.
This record has not been viewed during this period

  author = "Oney, Brian and Henne, Stephan and Gruber, Nicolas and Leuenberger, Markus and Bamberger, Ines and Eugster, Werner and Brunner, Dominik",
  title = "{T}he {C}arbo{C}ount {C}{H} sites: characterization of a dense greenhouse gas observation network",
  journal = "Atmospheric Chemistry and Physics",
  year = 2015,
  volume = "15",
  number = "19",
  pages = "11147--11164",
  month = oct,

E-Citations record created: Tue, 13 Oct 2015, 14:38:13 CET